A Variational Bayesian Framework for Clustering with Multiple Graphs
نویسندگان
چکیده
منابع مشابه
Variational Bayesian speaker clustering
In this paper we explore the use of Variational Bayesian (VB) learning in unsupervised speaker clustering. VB learning is a relatively new learning technique that has the capacity of doing at the same time parameter learning and model selection. We tested this approach on the NIST 1996 HUB-4 evaluation test for speaker clustering when the speaker number is a priori known and when it has to be e...
متن کاملA Variational Bayesian Framework for Graphical Models
This paper presents a novel practical framework for Bayesian model averaging and model selection in probabilistic graphical models. Our approach approximates full posterior distributions over model parameters and structures, as well as latent variables, in an analytical manner. These posteriors fall out of a free-form optimization procedure, which naturally incorporates conjugate priors. Unlike...
متن کاملVariational Inference for Nonparametric Multiple Clustering
Most clustering algorithms produce a single clustering solution. Similarly, feature selection for clustering tries to find one feature subset where one interesting clustering solution resides. However, a single data set may be multi-faceted and can be grouped and interpreted in many different ways, especially for high dimensional data, where feature selection is typically needed. Moreover, diff...
متن کاملBayesian clustering in decomposable graphs
Abstract. In this paper we propose a class of prior distributions on decomposable graphs, allowing for improved modeling flexibility. While existing methods solely penalize the number of edges, the proposed work empowers practitioners to control clustering, level of separation, and other features of the graph. Emphasis is placed on a particular prior distribution which derives its motivation fr...
متن کاملSelf-weighted Multiview Clustering with Multiple Graphs
In multiview learning, it is essential to assign a reasonable weight to each view according to the view importance. Thus, for multiview clustering task, a wise and elegant method should achieve clustering multiview data while learning the view weights. In this paper, we propose to explore a Laplacian rank constrained graph, which can be approximately as the centroid of the built graph for each ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2012
ISSN: 1041-4347
DOI: 10.1109/tkde.2010.272